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Summary:

Drawing inferences for high-dimensional models is challenging as regular asymptotic theories are 

not applicable. This paper proposes a new framework of simultaneous estimation and inferences 

for high-dimensional linear models. By smoothing over partial regression estimates based on a 

given variable selection scheme, we reduce the problem to a low-dimensional least squares 

estimation. The procedure, termed as Selection-assisted Partial Regression and Smoothing 

(SPARES), utilizes data splitting along with variable selection and partial regression. We show that 

the SPARES estimator is asymptotically unbiased and normal, and derive its variance via a 

nonparametric delta method. The utility of the procedure is evaluated under various simulation 

scenarios and via comparisons with the de-biased LASSO estimators, a major competitor. We 

apply the method to analyze two genomic datasets and obtain biologically meaningful results.
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1. Introduction

Consider the classical linear model:

Y = Xβ0 + ε (1)

where Y = (y1, y2, …, yn)T is the n-vector of the response variable; X = (X1, X2, …, Xp) is 

the n × p design matrix that consists of p covariate vectors Xj’s; X can also be written as 
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X = x1
T, x2

T ,.., xn
T T

, where xi = (xi1, …, xip) represents the p-vector of covariates for the ith 

individual; β0 = β1
0 ,…, βp

0 T
 is the true parameter vector of interest; ε = (ε1, ε2, …, εn)T is 

the random noise vector and E(ε) = 0n.

In the traditional low-dimensional setting when n > p, it is well known that least squares 

estimator βLS = XTX
−1

XTY converges to a normal distribution centered at β0, which 

provides exact estimation and inferences through explicitly computable p-values and 

confidence intervals. On the other hand, when n < p, the least squares estimation would fail 

because the sample covariance matrix Σ = XTX /n is singular. However the n < p problem has 

become increasingly relevant over the past two decades with the common availability of 

high-throughput data. The goal is often to find a parsimonious model to explain the response 

in the presence of massive covariates. A number of selection and estimation methods 

including LASSO (Tibshirani, 1996), Adaptive LASSO (Zou, 2006), SCAD (Fan and Li, 

2001), ISIS (Fan and Lv, 2008), among others, are available.

More recently, interest in the statistical community has shifted to making reliable inferences 

in high-dimensional models. Researchers have been trying to tackle the problem from 

different angles. One direction is to make inferences based on the selected model, i.e. the 

one that is chosen by a given variable selection procedure. Wasserman and Roeder (2009) 

proposes a multi-stage procedure that is based on data splitting to separate selection and 

inference; Berk et al. (2013) provides conservative confidence intervals for the selected 

variables by defining a set of candidate models; Lee and Taylor (2014); Lee et al. (2016) 

develops the conditional asymptotics of the coefficient estimates, given the selected model. 

The second direction is to estimate and make inferences of the low-dimensional parameters 

in the high dimensional models. Belloni et al. (2013, 2014) propose a double selection 

procedure instead of a single selection step to estimate and construct confidence regions for 

a regression parameter of primary interest. Some other works propose estimators and 

inferences based on penalized estimation. A typical example is the bias correction method 

based on LASSO (Zhang and Zhang, 2014; Van de Geer et al., 2014; Javanmard and 

Montanari, 2014), which provides point estimation and confidence intervals for the model 

parameters. There is also work by Ning and Liu (2017) that proposes hypothesis tests and 

confidence regions based on the decorrelated score function and test statistic.

These approaches have their merits and demerits. While Wasserman and Roeder (2009); Lee 

and Taylor (2014); Lee et al. (2016) aim at exact inference for post-selection estimates, it is 

confined to the selected model from the “first step.” Thus, flaws in the initial model-

selection step, cannot be rectified in subsequent steps. The limitation of requiring perfect 

model selection is improved in Belloni et al. (2014), meanwhile, Wasserman and Roeder 

(2009); Meinshausen et al. (2009) recommend not performing selection and estimation on 

the same data set. On the other hand, the performance of the original de-biased LASSO 

estimator relies heavily on the accuracy of estimating the precision matrix, i.e. Σ−1, which 

plays an unduly crucial role in the estimation and inference subsequently. In Javanmard and 

Montanari (2014), they relaxed the required accuracy of estimating Σ−1 (the matrix M in 
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their paper), instead they set M as to minimize the error term and the variance of the target 

Gaussian limit.

In this paper we propose a novel approach to consistently estimate β0, provide p-values for 

all covariates, and compute confidence intervals for any fixed subset of parameters in high-

dimensional linear models. The approach, coined Selection-assisted Partial Regression and 
Smoothing (SPARES), possesses asymptotic unbiasedness and asymptotic normality. Our 

idea takes advantage of the multisample-splitting method in Meinshausen et al. (2009), 

which defines a p-value for each predictor from each sample-splitting and then aggregates 

these p-values to declare a single p-value per feature. One possible criticism of this approach 

is that the p-values and the aggregation have a certain arbitrary angle to them: for example, 

features not selected in each sample-split subsample are all assigned a p-value 1. In contrast, 

our SPARES estimator utilizes partial regression to estimate β0 in each sample-split 

followed by a natural smoothing step. In each data split, our procedure provides an estimate 

of β j
0, j = 1, 2, .., p regardless of whether it was chosen by the selection procedure. Such idea 

of attaching variable j to the selected variables is also used in Belloni et al. (2014). Then we 

average over the variation of the selection and sample-split to obtain a smoothed estimator. 

For these reasons, SPARES is not a post model-selection method. Furthermore, our approach 

avoids the need to estimate the high-dimensional precision matrix.

Our approach stands out from the majority of related works (Wasserman and Roeder, 2009; 

Zhang and Zhang, 2014; Van de Geer et al., 2014; Javanmard and Montanari, 2014; Belloni 

et al., 2014; Ning and Liu, 2017) in that it is neither restricted to a fixed realization of the 

selected model nor limited to a certain selection procedure. The smoothing accomplished 

through multisample-splitting ensures that the β j’s are asymptotically normal with 

negligible bias while the standard errors can be readily estimated via a nonparametric delta 

method (Efron, 2014). Consequently, inferences can be made for each and every 

β j
0, j = 1, 2, .., p without having to confront the curse of dimensionality. As shown in the data 

applications, our method is advantageous in giving uncertainty measures (such as p-values) 

to all high dimensional coefficients at once.

The rest of this paper is organized as follows. Section 2 describes the SPARES estimator and 

Section 3 develops its theoretical properties. Section 4 shows how to draw inferences 

through SPARES, including confidence intervals and significance tests. Section 5 discusses 

the extension to a subvector of β0 with a fixed dimension. In Section 6 we conduct 

simulations to examine the performance of SPARES and present comparisons to de-biased 

LASSO methods. Section 7 comprises two real data applications and Section 8 summarizes 

the merit of this work and pinpoints future research.

2. Proposed Method

Let [p] = {1, 2, .., p} denote the set of integers for any positive p. For a vector V of length p, 

denote the entry corresponding to subscript j ∈ [p] by Vj or (V)j ; for a square matrix Σ = 

Σp×p, denote the entry corresponding to subscripts j, k ∈ [p] by Σjk or (Σ)jk for clarity if 

necessary; for a subset S ⊂ [p], denote the sub-design matrix XS = (Xj)j∈S and the sub-
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covariance matrix ΣS = (Σjk)j,k∈S. The projection matrix of XS is denoted as 

HS = XS(XS
TXS)−1

XS
T. The active set of β0 is S0, n = { j ∈ p : β j

0 ≠ 0}.

One-time SPARE:

We first introduce the estimation of β0 through Selection-assisted Partial Regression 

(SPARE) on a single data-split. Given data Dn = (X, Y ) as in model (1) and a generic 

selection procedure 𝒮λ with parameter λ, we first split Dn into two halves D1 and D2, with |

D1| = ⌊n/2⌋, |D2| = ⌈n/2⌉, the floor and ceiling of it. Denote the subset of variables selected 

by 𝒮λ on D2 as S = 𝒮λ D2 . Next on D1 = (X1, Y1), the partial regression estimator for 

β j
0, j ∈ p  is

β j = (XS ∪ j
1 TXS ∪ j

1 )−1XS ∪ j
1 TY1

j
, (2)

which is the coefficient estimate corresponding to X j
1 from the least squares regression of Y1 

on XS ∪ j
1 . Moreover, (2) can be written as β j = X j

1T(In/2 − HS\ j
1 )X j

1 −1
X j

1T(In/2 − HS\ j
1 )Y1 in 

the partial regression formulation.

Let SC = [p] \ S, we can write the one-time SPARE estimator compactly as

The rationale for SPARE to work is that given a subset of important predictors S ⊂ [p] that 

is close to the active set S0,n, the partial regression estimator (2) would be a fine estimator 

that is close to the truth β j
0, for all j ∈ [p]. In fact, as long as S ⊃ S0,n, (2) would be an 

unbiased estimator for β j
0, regardless of j ∈ S or not. However, given the large number of 

predictors, the one-time SPARE estimator is highly variable, and heavily depends on the 

selected S and the specific split of data.

SPARES:

To overcome this difficulty, we introduce its smoothed version, the SPARES estimator, 

which is derived from multisample-splitting and repeated applications of SPARE. For a large 

enough B and each b = 1, 2, .., B, we first draw a sample of size n/2, with replacement, from 

the full data and denote it as D1
b. When n is odd, we interpret n/2 as ⌊n/2⌋. Let I1 = {i1, i2, …, 

in/2}, 1 ⩽ ik ⩽ n be the collection of indices of the observations in D1
b. Next, we collect the 

observations that are not drawn in D1
b as D2

b with index set I2 = [n] \ I1. Thus I1 ∪ I2 = [n] and 

I1 ∩ I2 = ∅. Now the application of SPARE by (3) is βb = β D1
b, Sb , where Sb = 𝒮λ D2

b ; the 

final step is to average over all βb’s,
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βSPARES = 1
B b = 1

B
βb . (4)

In terms of the computational cost, each of the one-time SPARE has the same time 

complexity as one run of LASSO (O(np2)), and the cost of the SPARES procedure is B 
times that. But with the help of parallel computing, we could largely reduce the computation 

time by any desired factor K depending on the computing tool. Thus the time complexity of 

SPARES is O(Bnp2/K), a multiple of one-time LASSO proportional to the number of re-

samples. Empirically the total time cost of the SPARES procedure is linear in p log n.

In the rest of the paper, we will always use β for the one-time SPARE estimator and β for the 

SPARES estimator. Both the one-time SPARE and the SPARES possess the asymptotic 

unbiasedness and normality, but SPARES is much more stable due to the smoothing effect 

from multisample-splitting, which we will explore in depth throughout the rest of this paper.

3. Theoretical Results

3.1. One-time SPARE

We first establish the asymptotic property of the one-time SPARE estimator under the 

following assumptions.

(A1). Randomness of Data: In model (1), εi ⊥ xi; εi’s are i.i.d. random errors with 

mean zero, finite variance σ2 and finite third absolute moment E εi
3 ⩽ ρ0; 

X = (x1
T ,…, xn

T)T, xi’s are i.i.d. mean zero sub-Gaussian random vectors in Rp 

with covariance matrix Σp×p, eigenvalues are bounded,

0 < cmin ⩽ λmin(Σ) ⩽ λmax(Σ) ⩽ cmax < ∞ .

xi’s also have finite component-wise third absolute moments ∀j, E|xij|3 ⩽ ρ1.

(A2). Order of Model Parameters: There exist constants 0 < c1 ⩽ 1, cβ > 0 such that 

s0 = S0, n = O(n
c1), max j β j

0 ⩽ cβ.

(A3). Sure Screening Property: There exists a sequence λn n ⩾ 1 and constants 0 < η 

< 1, c2 > 2c1 such that Sn, λn
/n ⩽ η, and

P Sn, λn
⊃ S0, n ⩾ 1 − O n

−c2 − 1
as n ∞ . (5)
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Here Sn, λn
 denotes the selected set of variables with sample size n and tuning 

parameter λn.

REMARK 1: The sure screening property is met in Fan and Lv (2008); Fan and Song (2010), 

and is guaranteed with the right order of tuning parameter λ using LASSO (Bach, 2008). 

More specifically, by Fan and Lv (2008); Fan and Song (2010), in addition to assumptions 

(A1) and (A2), the following conditions are required for the sure screening property to hold:

• Var(Y ) = O(1), and for some κ ⩾ 0 and c0, c3>0, min j ∈ S0
β j

0 ⩾ c0/nκ and

min
β j ≠ 0

cov β j
−1Y, X j ⩾ c3;

• log p = O(nξ) for some 0 < ξ < 1 − 2κ.

When κ ⩾ 1/3, the sparsity requirement implied by Fan and Lv (2008), s0 = o(nθ ) for some 0 

< θ < 1 − 2κ, is stronger than that in Javanmard and Montanari (2018), which is s0 = o(n/

(log p)2). When κ < 1/3, the comparison between the two conditions are inconclusive. 

Please see conditions 1–4 in Fan and Lv (2008) for more details.

In (A1), only a moment condition is required on the error terms and a sub-Gaussian 

distribution for the covariates. For comparisons, while the asymptotic normality of the whole 

p−dimensional de-biased estimator is not guaranteed for non-Gaussian errors, a central limit 

theorem argument can be used to obtain approximate Gaussianity of components of fixed 

dimension (Bühlmann et al., 2014). Thus the inference for any fixed low-dimensional 

parameter is still valid for these types of methods under sub-Gaussian errors with finite 

moment conditions. In (A2), there is no direct assumption on the order of p, however, it is 

implied through (A3), a condition made directly on the selection method. One reason for 

such an assumption, instead of more basic ones like the order of p or the covariance structure 

of the predictors, is that selection only plays an assistive role in our method; the estimation 

part is in fact low-dimensional and therefore does not directly require typical high-

dimensional conditions.

THEOREM 1: Given model (1) and assumptions (A1)-(A3), consider the one-time SPARE 

estimator β = β1, β2 ,…, βp
T
 as defined in (3). Denote m = n/2 , σ j

2 = σ2 XS ∪ j
1 T

XS ∪ j
1 /m

j j

−1
. 

Then ∀j ∈ [p], as m → ∞,

m β j − β j
0 /σ j N 0, 1 . (6)

REMARK 2: Note that we could always let the quantity of interest in (6) to be zero whenever 

S0 ⊄ S, whose probability goes to zero by (A3). Thus we only need to show the convergence 

when the event S0 ⊂ S  holds.

The proof is presented in the Web Appendix A.
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3.2. SPARES

Given the high volume of predictors in the model (1), the one-time estimator is expected to 

be noisy and unstable, especially for all the j ∉ S0, n that are the majority of the p−vector β0. 

In contrast, the SPARES estimator is more stable as it smooths over both estimation and 

selection. As the SPARES introduces extra dependency between the selections Sb’s and the 

partial regression estimates, the following condition, which is stronger than “sure 

screening”, is required for the desired theoretical property.

(B3). Selection Consistency: There exists a sequence λn n ⩾ 1 and constants 0 < η < 

1, c2 > 2c1 such that Sn, λn
/n ⩽ η, and

P Sn, λn
= S0, n ⩾ 1 − o n

−c2 − 1
as n ∞ . (7)

The selection consistency is often met under certain sparsity conditions depending on the 

selection method (Zhao and Yu, 2006; Zhang, 2010). Take LASSO for example, the 

selection consistency property is guaranteed under s0 = O(nc1) and s0 log p = o(nc3) for some 

0 < c1 < c3 < 1, along with irrepresentable condition and others.

THEOREM 2: Given model (1) and assumptions (A1,A2,B3), consider the SPARES estimator 

βSPARES = β1 ,…, β p
T

 as defined in (4). For each j, there exist random variables Z j
0, Δ j, 

such that as n, B → ∞,

n β j − β j
0 = Z j

0 + Δ j, Z j
0/σ j N 0, 1 , Δ j = op 1 , (8)

where σ j
2 = σ2 ΣS0, n ∪ j

−1
j j

 is bounded.

The proof is presented in the Web Appendix along with some useful lemmas. The 

difficulties in deriving the theoretical properties of the SPARES estimator arise primarily 

from the randomness of Sb’s, the selected subsets of variables from subsamples of the 

original data. It is unclear whether a standard bootstrap theorem can be applied to such 

random sets since the uniform control that one obtains under Donsker-type conditions in 

empirical process theory is absent. Consequently, assumptions weaker than selection 

consistency are not effective in controlling the randomness of the Sb’s. Meanwhile our 

simulations suggest the validity of SPARES when only (A3) holds instead of (B3). Under 

assumption (B3), the asymptotic variance of ours converges to the best variance of an 

unbiased estimator of β j
0 under the reduced model

Y = XS0 ∪ jβS0 ∪ j
0 + ε . (9)
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Such bound is smaller than the semiparametric information bound that involves all p 
covariates (Belloni et al., 2014; Van de Geer et al., 2014). Nevertheless the sets of conditions 

for the mentioned works and ours are quite different that they might not be directly 

comparable.

4. Inference by SPARES

4.1. Estimator of Standard Errors

As shown in Theorem (2), β j converges to a normal distribution whose variance depends on 

the unknown active set S0,n. We propose an implementable approach to estimating the 

standard error of β j using Theorem 1 of Efron (2014), see also Wager et al. (2014) and 

Theorem 9 of Wager and Athey (2018). We denote the estimator as se j
B. For the bth bootstrap 

data, D1
b, we re-write the index set as I1

b = ib1, ib2 ,…, in/2 . For i = 1, 2, …, n define Ibi = 

#{ibk = i}, the number of times that the ith observation appears in the bth re-sample. The 

vector Ib = (Ib1, Ib2, …, Ibn) then follows a multinomial distribution with n/2 draws on n 
outcomes each having probability 1/n, whose mean vector and covariance matrix are

Ib 1
21n, 1

2In − 1
2n1n

T1n (10)

where 1n the (column) vector of n 1’s and In the n × n identity matrix. The nonparametric 

delta method estimator of the standard error is then given by:

se j
B =

i = 1

n
covi j

2
1/2

, (11)

where

covi j =
b = 1

B
Ibi − I ⋅ i β j

b − β j /B (12)

is the bootstrap covariance between Ibi and β j
b, and I ⋅ i = b = 1

B Ibi/B.

As emphasized in Efron (2014), the merit of smoothing the SPARE estimator is to convert a 

“jumpy” selection-based estimator βb into a smooth version of β. It is pointed out in Wager 

et al. (2014) that the nonparametric delta method standard error estimator tends to be biased 

upwards when the number of bootstraps is small. They proposed an alternative bias-

corrected version of (11)
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seU
B = (seB)2 − n

2B2
b = 1

B
(βb − β)

2 1/2
(13)

Note that (13) converges to (11) as B → ∞. The original version (11) would require B = 

O(n1.5) to reduce Monte Carlo noise down to the level of sampling noise, while (13) only 

requires B = O(n). Moreover, our experience shows that the unbiased version does converge 

to the empirical standard error faster than the original one.

4.2. Confidence Intervals and P-values

Following previous discussion, the asymptotic 1 − α confidence interval for each β j
0 is given 

by

β j − Φ−1(1 − α/2)se j
B, β j + Φ−1(1 − α/2)se j

B , (14)

where Φ−1 is the inverse CDF of the standard normal distribution. The p-value of testing 

H0 : βj = 0 is

p j = 2 × 1 − Φ |β j| se j
B . (15)

5. Extension of SPARES to a Subvector β(1) with a Fixed Dimension

It is natural to extend our procedure to a subvector β(1) of β0 with a fixed dimension p1 ⩾ 2. 

Without loss of generality, assume that β 1 = β
S 1
0 = (β1

0, β2
0, .., βp1

0 )T with |S(1)| – p1. 

Accordingly, we modify the SPARE estimator in (2) to be

β
S 1
b = (X

Sb ∪ S 1
b TX

Sb ∪ S 1
b )

−1
X

Sb ∪ S 1
b TYb

S 1 , (16)

which gives a corresponding SPARES estimator for β(1):

β 1 = 1
B b = 1

B
β

S 1
b . (17)

The corresponding extension of Theorem 2 is stated below.
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THEOREM 3: Consider model (1) under assumptions (A1,A2,B3), and a fixed finite subset S(1) 

⊂ {1, 2, .., p} with S 1 = p1. Let β 1  be the SPARES estimator for β 1 = β
S 1
0  as defined in 

(17). There exist random vectors Z(1), ∆(1), such that as n, B → ∞,

n β(1) − β 1 = Z 1 + Δ 1 , Σ 1 −1/2
Z 1 N 0, Ip1

, Δ 1 = op 1p1
, (18)

and Σ 1 = σ2 Σ
S0, n ∪ S 1
−1

S 1
 is positive definite.

REMARK 3: There is also a direct extension of the one-dimensional nonparametric delta 

method for estimating the variance-covariance matrix of β 1 , Σ 1 = COV 1
T COV 1 , where

COV 1 = cov1
1 , cov2

1 , .., covn
1 T

(19)

covi
1 =

b = 1

B
Ibi − I ⋅ i (β

S 1)
b − β 1 B . (20)

The extension to a subvector β(1) with a fixed dimension allows us to derive confidence 

regions for a subset of variables of interest and test for contrasts of certain predictors.

6. Simulation Studies

We designed all simulation scenarios based on the linear model (1) with 

X = X1 ,… X p = x1
T ,…, xn

T T
, ε = (ε1, …, εn)T, assuming xi’s i.i.d. ∼ N (0p, Σp×p) and εi’s 

i.i.d. ∼ N (0, 1). A total of 200 simulated datasets were generated for each simulation 

configuration.

We first illustrate the advantage of using SPARES over one-time SPARE. We set sample size 

n = 200, number of predictors p = 300, and s0 = 3 nonzero signals with Σp×p being the 

identity matrix. As shown in Web Table (1), over 200 replications, the biases of both 

approaches are negligible on average, but the standard errors of SPARES are much smaller 

than those of one-time SPARE, which results in higher power and more accurate inferences. 

Thus we recommend SPARES in practice.

In subsection 6.1, we explore the performance of SPARES under various settings, including 

different correlation structures of X, strong and weak signals strength, and stress tests with 

ultrahigh dimensionality. In subsection 6.2, we compare SPARES with two de-biased 

LASSO estimators, LASSO-Pro from Van de Geer et al. (2014) and SSLASSO from 

Javanmard and Montanari (2014).
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6.1. Performance of SPARES under various settings

We will go over three examples, all of which assume the linear model (1) as truth, but with 

different parameters.

Example 1. Let sample size n = 150, number of predictors p = 300, number of nonzero 

signals s0 = 5, and a firealization of β0 where S0,n = {66, 97, 145, 166, 173} was a fixed 

realization of s0 draws without replacement from [p] and βS0, n
0 = 1, 0.6, − 1, − 0.6, 1 . We 

examined three commonly used correlation structures: identity; first-order autoregressive 

(AR(1)) with ρ = 0.5; compound symmetry (CS) with ρ = 0.5. LASSO was used as the 

selection procedure 𝒮λ, while λ was chosen by cross-validation. As summarized in Table 

(1), for both nonzero signals and noise variables, the bias of SPARES estimator was well 

controlled while the SE estimates were very close to the empirical ones. Consequently, the 

coverage probabilities of the 95% confidence intervals were at the nominal level. In addition, 

the variable selection frequency based on p-values of SPARES was higher for true signals 

and much lower for noise variables compared to selection by LASSO. Notice that for 

identity and AR(1) correlation structures, the selection frequencies of the true signals were 

uniformly close to 1, suggesting “sure screening” condition was met and thus the better 

coverage probabilities. Therefore the simulation result validates our claim that SPARES 

works under “sure screening” assumption.

Example 2. Let n = 150, p = 500, and

• Example 2.1: s0 = 15, Σp×p = diag(Σ1, …, Σ10), where each Σk was 50 × 50 with 

an AR(1) correlation structure, (Σk )ij = (0.1k − 0.1)|i−j|, k = 1, 2, .., 10. The 

active set S0,n was a fixed realization of s0 draws without replacement from [p], 

and βS0, n
0  was a fixed realization of s0 i.i.d. Uniform U [0, 2] variables;

• Example 2.2: s0 = 20, Σp×p = diag(Σ1, …, Σ10), where each Σk : (Σk )ij = (0.3)|i−j|. 

The non-zero signals are assigned effect sizes β50k − 45
0 = 0.2k, β50k − 15

0 = − 0.2k

for k = 1, 2, . . ., 10.

We applied SPARES with LASSO (10-fold cross validation to choose λ) as the model 

selection procedure, and reported the simulation averages of βSPARES, along with confidence 

intervals, mean biases, coverage probabilities, and type I errors for testing H0 : β j
0 = 0. The 

results are summarized in Web Figures (1) and (2). For the true signals jx ∈ S0,n, the 

proposed method worked well regardless of the correlation, with negligible biases and close-

to-nominal coverage probabilities. On the other hand, the biases for the estimates of noise 

variables were enlarged when they were highly correlated with non-zero signals. The 

estimated coverage probabilities and type I errors deviated more from the nominal level 

consequently. The type I error became negligible when the effect size was over 1. Coupled 

with an observation that the bias was larger for the noise variables that were correlated with 

moderate non-zero signals, our takeaway was that the magnitude of bias was a combination 

of selection errors as well as correlations with true signals.
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Example 3 serves as a “stress test” to illustrate how SPARES handle large datasets with a 

number of “weak signals”. We let n = 500, p = 1000, 5000 and 10000, and s0 = 205. Within 

the 205 non-zero signals, 5 are of sizes 0.2, 0.4, 0.6, 0.8, 1, and the rest 200 are fixed 

random realizations from the uniform distribution U [(−0.2, −0.1) ∪ (0.1, 0.2)]. The 

multivariate normal distribution with mean zero and the AR(1) correlation structure with ρ = 

0.5 is applied to generate X’s. As summarized in Table (2), the SPARES estimator remains 

nearly unbiased for both strong and weak signals. The coverage probabilities of strong 

signals are close to the nominal level 0.95, while those for weak and zero signals are above 

0.9 on average. This demonstrates that SPARES is rather reliable and robust even for large 

datasets with a number of weak signals.

6.2. Comparisons with De-biased LASSO Estimators

We compared SPARES with different versions of de-biased LASSO estimators in Example 

4, where the active set S0,n ⊂ {1, 2, .., p} was a fixed random realization with size |S0,n| = 5, 

and βS0, n
0  was a fixed realization of 5 i.i.d. random variables from uniform U [0.5, 2]. The 

size of the active set is reduced to 5 for clearer comparison and display of the result. Three 

correlation structures are considered for completeness:

• Example 4.1: Identity Σp×p = Ip×p;

• Example 4.2: AR(1) Σp × p: Σ jk = 0.8 j − k ;

• Example 4.3: Compound symmetry Σp×p : (Σ)jk = 0.5.

The estimated biases and coverage probabilities were shown in Table (3) and Web Figure 

(3), where LASSO-Pro was proposed in Van de Geer et al. (2014) and SSLASSO was from 

Javanmard and Montanari (2014).

Across the board, SPARES gave less biased point estimates for the true signals, and 

provided reliable confidence intervals around the nominal level for both true signals and 

noise variables. In contrast, both LASSO-Pro and SSLASSO had visible discrepancies 

between the true signals and noise variables. While LASSO-Pro had lower-than-nominal 

level coverages for the true signals, it performed even worse in Example 4.1, probably due to 

the fact that the node-wise LASSO was not ideal when estimating the precision matrix when 

Σp×p was an identity matrix. As far as SSLASSO was concerned, the confidence intervals for 

the noise variables were too conservative, while the coverages for the true signals in 

Example 4.2 were considerably low.

In summary, the performance of SPARES aligned well with the theoretical expectations, 

especially for the active set S0,n. We did observe, however, some false-positives when the 

noise variables were highly correlated with those in the active set. Nevertheless, compared 

with the de-biased LASSO methods, SPARES showed substantial improvement by providing 

less biased estimates with more accurate coverage probabilities close to the nominal level.
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7. Data Examples

7.1. Riboflavin Production Data

We applied our method to analyze a dataset on riboflavin (vitamin B2) production by 

bacillus subtilis, made public by Bühlmann et al. (2014) and analyzed by Meinshausen et al. 

(2009), Bühlmann et al. (2014), Van de Geer et al. (2014) and Javanmard and Montanari 

(2014). The data contained n = 71 samples and p = 4088 covariates, measuring the logarithm 

of the expression levels of 4088 genes. The response variable was the logarithm of the 

riboflavin production rate.

We related the response to the gene expressions using the linear model (1). We checked the 

collinearity among the genes, and their pairwise correlations are plotted in the Web Figure 

(4). We further normalized the genes so that their effect sizes are comparable. The LASSO 

was used as the variable selection method, and we let B = 1000 be the number of re-samples. 

Assisted by the LASSO selection, we derive the SPARES estimator β, the standard error 

estimates as in (11), and the p-values as in (15). With a standard Bonferroni correction to 

adjust FWER to the 5% significance level, we identified four genes that were significantly 

associated with the response, namely YCKE_at, XHLA_at, YXLD_at, and YDAR at. If the 

FWER were set at 10%, one more gene, YCGN at, would be included. The confidence 

intervals for the top 5 genes are displayed on the right panel of Web Figure (5), with the 

point estimates shown in Table (4). By contrast, the results from other methods were less 

informative. For example, with a 5% FWER, the multisample-splitting method proposed in 

Meinshausen et al. (2009) identified YXLD_at, Van de Geer et al. (2014) claimed none, and 

Javanmard and Montanari (2014) only detected YXLD_at and YXLE_at, which are highly 

correlated themselves.

Our results had biological interpretations that are confirmed by the literature. It was reported 

that XHLA at was involved in cell lysis upon induction of PbsX (Kunst et al., 1997), 

increasing the capability to produce recombinant extracellular digestive enzymes that results 

in riboflavin production (7.04 in Mander and Liu (2010)). YCKE at, formally named as 

bglC, was also responsible for the production of certain enzyme, Aryl-phospho-beta-D-

glucosidase, and had extracellular protein secretory functions (Schallmey et al., 2004). 

YXLD_at, together with YXLE_at, was important for negative regulation of sigma Y 

activity (Tojo et al., 2003).

7.2. Multiple Myeloma Genomic Data

We analyzed a cancer genomic data with n = 163 multiple myeloma patients. Our interest 

lay in detecting the association between the β−2 microglobulin (B2M) and gene expressions. 

B2M is a small membrane protein produced by malignant myeloma cells, indicating the 

severity of disease. Identifying genes that are related to B2M is clinically important as it 

helps construct molecular prognostic tools for early diagnosis of disease.

We first used KEGG (Carlson, 2015) to identify gene pathways that are related to cancer 

development and progression, as well as some identified upstream genes that may regulate 

B2M. In total, there were p = 789 unique probes belonging to these pathways. We took the 

logarithm transformation for both the B2M test value and the gene expressions as our 
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response and predictors for model (1). We applied SPARES with LASSO as the selection 

method, and B = 500 re-samples were drawn for smoothing.

Our method offers additional biological insight compared to the other methods. As shown in 

Table (5), it identified two significant probes at 5% FWER after the Bonferroni correction, 

namely 204171 at (RPS6KB1) and 202076 at (BIRC2). In contrast, the two de-biased 

LASSO estimators identified no significant probes. Both detected genes are highly 

associated with malignant tumor cells: RPS6KB1, member of the ribosomal protein S6 

kinase (RPS6K) family, altercation/mutation has been related to numerous types of cancer 

including breast cancer, colon cancer, non-small-cell lung cancer, and prostate cancer 

(Sinclair et al., 2003; Van der Hage et al., 2004; Slattery et al., 2011; Zhang et al., 2013; Cai 

et al., 2015); BIRC2, whose encoded protein is a member of inhibitors of apoptotic proteins 

(IAPs) that inhibits apoptosis by binding to tumor necrosis factor receptor-associated factors 

TRAF1 and TRAF2 (Saleem et al., 2013), has been related to lung cancer and lymphoma 

(Wang et al., 2010; Rahal et al., 2014).

8. Conclusion

We have proposed a new framework of estimation and inference for the high-dimensional 

linear models (1), and shown the proposed SPARES estimator is asymptotically unbiased 

and normal, giving accurate and reliable component-wise inferences. The key improvement, 

compared to the existing works, lies in these aspects. SPARES converts the high-

dimensional problem of estimating the p-vector β0 to the low dimensional case by Selection-

assisted Partial Regression. Thus we avoid the curse of dimensionality on estimation and 

inference. SPARES is applicable to general selection methods including LASSO, SCAD, 

screening, boosting, and etc., as long as they possess the desired selection consistency 

property, which is likely to be loosened to sure screening property in practice as suggested in 

the extensive simulation study. SPARES is not sensitive to the tuning parameter λ in 𝒮λ, 

since it is not directly used for estimation, but only involved in the selection. Hence, our 

method has minimal requirements on extra model parameters and is almost robust toward 

selection of tuning parameters. This framework can be naturally extended to other non-linear 

regression models, such as generalized linear model and Cox model, through two general 

steps. First, we perform data-splitting on the original data, and then do selection on one half 

of the data followed by fitting low-dimensional model on the other half of the data using 

partial regression; Second, we repeat the first step many times and average over all estimates 

to form a smoothed estimate. We will report this work elsewhere.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Performance of SPARES under simulation example 1 with three correlation structures: Identity, AR(1) and 

Compound Symmetry (CS). The last column “-” represents the averages for all noise variables. Freq 𝒮λ is the 

selection frequency by LASSO; Freq SPARES is the selection frequency by p values of SPARES with 0.1 

FDR control; Empirical SE is the empirical standard error.

Index j 66 97 145 166 173 −

β j
0

1 0.6 −1 −0.6 1 0

Identity Bias (×10−3) 16 −1 −2 2 7 −1

Average se j
B

0.110 0.111 0.109 0.111 0.110 0.111

Empirical SE 117 0.109 0.104 0.113 0.124 0.109

Cov Prob (%) 0.91.5 94.0 95.0 96.0 91.5 94.8

Freq 𝒮λ 1 0.956 1 0.965 1 0.059

Freq SPARES 1 0.97 1 0.99 1 0.003

AR(1) Bias (×10−3) −6 2 7 10 −1 0

Average se j
B

0.115 0.116 0.114 0.115 0.116 0.115

Empirical SE 125 0.108 0.114 0.120 0.108 0.114

Cov Prob (%) 0.93.5 96.0 95.0 92.5 96.5 94.5

Freq 𝒮λ 0.998 0.938 1.000 0.929 1.000 0.046

Freq SPARES 1 0.925 1 0.905 1 0.001

CS Bias (×10−3) −12 −30 6 7 −14 −7

Average se j
B

0.151 0.149 0.152 0.150 0.150 0.154

Empirical SE 165 0.161 0.168 0.162 0.163 0.154

Cov Prob (%) 0.92.5 91.5 89.4 92.0 92.0 94.5

Freq 𝒮λ 0.986 0.742 0.958 0.651 0.988 0.045

Freq SPARES 1 0.775 1 0.795 1 0.005
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Table 2:

Performance of SPARES under simulation Example 3. Tables from top to bottom correspond to p = 1000; 

5000 and 10000. Last two columns are averages over small and zero signals.

Index 36 272 376 568 915 Small 0’s

β0 0.200 0.400 0.600 0.800 1.000 0.000

p = 1000

Bias 0.013 −0.006 0.014 −0.002 −0.014 0.005 0.004

Avg SE 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Emp SE 0.099 0.098 0.098 0.093 0.097 0.094 0.094

Cov Prob 0.960 0.920 0.930 0.930 0.940 0.907 0.908

Sel freq 0.045 0.418 0.930 1.000 1.000 0.021 0.002

p = 5000

Bias −0.005 0.009 0.010 0.003 0.004 0.004 0.000

Avg SE 0.093 0.093 0.095 0.094 0.094 0.094 0.094

Emp SE 0.092 0.096 0.098 0.099 0.112 0.095 0.096

Cov Prob 0.960 0.930 0.960 0.910 0.920 0.905 0.935

Sel freq 0.022 0.390 0.906 0.999 1.000 0.015 0.001

p = 10000

Bias −0.003 0.003 0.006 0.008 −0.025 0.005 0.000

Avg SE 0.094 0.094 0.094 0.095 0.094 0.095 0.095

Emp SE 0.094 0.096 0.101 0.103 0.093 0.096 0.097

Cov Prob 0.950 0.940 0.930 0.930 0.950 0.902 0.939

Sel freq 0.015 0.313 0.860 0.996 1.000 0.012 0.000
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Table 3:

Comparisons of SPARES with LASSO-Pro and SSLASSO under Example 4. The rows consist of 5 true 

signals and the average of zero signals. In each cell, top number is for SPARES; middle number is for LASSO-

Pro; lower number is for SSLASSO.

Example 4.1 Example 4.2 Example 4.3

Index β j
0

Bias (×10−3) Cov Prob (%) Bias (×10−3) Cov Prob (%) Bias (×10−3) Cov Prob (%)

78 1.07

 −1.77 90.5  10.43 92.5  −0.35 96.5

−81.78 70.5  −44.09  86  −38.43 92.5

−79.33 90.5 −101.95 84.5 −113.72 92.5

102 1.04

 −1.04 96.5  9.70 92  2.44 95

−80.28  76  −44.54 87  −32.42 89

−77.72 93.5  −99.66 82 −105.60 92

242 1.19

 −1.62  94  15.58 93.5  −4.67 96.5

−89.43 71.5  −47.57 88.5  −40.39 91.5

−88.69 87.5 −104.25  84 −115.51  92

359 1.43

 −0.14 94  2.98 96.5  2.01 95

−75.87 81  −41.40  88 −30.61 91

−80.91 94 −98.14  85 −107.5 89

380 0.62

 −3.57 95.5  0.54  93  5.88 91.5

−84.86  75  −60.80  88 −24.20 86.5

−85.73 89.5 −111.11 81.5 −99.26 90.5

- 0

−0.46  95 0.65 94.82  3.26 95.16

−0.40  97 3.16 96.46  5.24 96.34

−0.27 99.5 4.15 99.69 26.88 99.94
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Table 4:

Analysis of the ribo avin genomic data. β is the SPARES estimator; p-values are adjusted by Bonferroni 

correction (multiplied by p). The top 10 and bottom 10 most/least signi cant genes are tabulated.

Gene β SE Adjusted p-value

YCKE_at 0.37 0.06 < 0:001

XHLA_at 0.48 0.09 < 0:001

YXLD_at −0.53 0.11 0.01

YDAR_at −0.28 0.06 0.01

YCGN_at −0.31 0.07 0.09

RPLJ_at −0.26 0.06 0.10

YQIZ_at −0.25 0.06 0.13

YCDH_at −0.27 0.07 0.15

SPOIISA_at 0.25 0.06 0.35

YRPE_at −0.25 0.07 0.63

…

YXAL_at −2 × 10−4 0.09 1

XPT_at −1.6 × 10−4 0.07 1

YOZG_at −2.9 × 10−4 0.14 1

YOJB_at 1.7 × 10−4 0.10 1

YBCL_at −1.8 × 10−4 0.11 1

YJAX_at 1.3 × 10−4 0.09 1

YOSE_at 1.1 × 10−4 0.11 1

YUNA_at 4.9 × 10−5 0.07 1

YISO_at 1.7 × 10−5 0.08 1
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Table 5:

Analysis of the Multiple Myeloma genomic data. The top 6 and bottom 6 most/least signi cant genes are 

tabulated.

Gene β SE Adjusted p

204171_at_(RPS6KB1) −0.20 0.042 0.002

202076_at_(BIRC2) −0.17 0.041 0.037

220414_at −0.20 0.05 0.14

220394_at −0.18 0.05 0.59

206493_at −0.19 0.06 0.63

209878_s_at −0.17 0.05 0.69

…

207924_x_at 5 × 10−4 0.07 1

205289_at −4.4 × 10−4 0.06 1

203591_s_at 4.7 × 10−4 0.07 1

224229_s_at 2.4 × 10−4 0.06 1

217576_x_at 2.5 × 10−4 0.07 1

201656_at 2.5 × 10−4 0.08 1
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